
Kuncheng Feng, Taeyoung Park, and Johnson Liu

CSC366

Professor Schelgel

12/3/2021

Train Network Cognitive model

Introduction

In our modern world, people travel all the time. Whether it's from class to class, building

to building, or country to country, moving from one place to another is a norm. But changing

locations isn’t a simple thing that happens in the blink of an eye. Before they set foot on their

path, people consider many things that determine which path they should take. For our final

project, we wanted to model the cognitive process that people go through in order to decide

which is the best path to take. After some discussion, we wanted to model a world of train

networks that includes stations and routes that connect them, and our commuter will have to

decide which route is the best to take when traveling from one location to another.

Background

Our model is basically a graph problem, unlike the graphs that we are familiar with in

high school classes where points are plotted based on X and Y values to show relations. “A

graph in this context is made up of vertices (also called nodes or points) which are connected by

edges (also called links or lines)” (Graph theory). And the problem that involves these graphs is

finding out which edges connect two nodes with the lowest weight. Computer scientist Dijsktra’s

“original algorithm found the shortest path between two given nodes, but a more common

variant fixes a single node as the ‘source’ node and finds shortest paths from the source to all

other nodes in the graph, producing a shortest-path tree” (Dijkstra’s algorithm).



Facebook, YouTube, GPS, Yelp, or any other services that recommend their users similar

content, have algorithms that solve the graph problem on a daily basis. In YouTube’s case each

video is considered a node, and the links to other videos are edges, while the user is watching an

video, YouTube’s algorithm will take many factors into account and recommend the users the

links to other most similar videos, these links have their version of highest weight, or graph

theory’s version of shortest path. For Google Maps, they collect data from cell phone users, and

then analyze “the total number of cars, and how fast they're going, on a road at any given time.”

(Stenovec). And then literally recommends the user the shortest path. And lastly for us, the train

stations will be nodes, and the routes that connect them are edges, upon consulting with the

commuter’s knowledge about the network, a shortest path will be determined.

Methods

In our implementation, we modeled our world with stations, trains, connections, and an

abstract rider. The rider holds the information of where he is currently at, where he needs to go,

and a knowledge base about the world. The knowledge base can be organized in two categories:

hard knowledge and soft knowledge. Hard knowledge base consists of stations, trains, and the

connections that indicate which station is connected to which, by which train and by what

weight. Soft knowledge base consists of the state of trains that will later be used to modify the

weight of connections, and along the rider’s journey he will have chances to revise his beliefs

about the trains.

When the program starts, the rider first needs to know his starting station and his goal

station, he then gathers up all the hard and soft knowledge with the assumption that all trains

have normal status, and finally begins his journey. In between train rides, the rider will imaginary

travel all the possible paths to reach his destination, whether he learns new information or not, he



then weights those paths with the basic traveling weight from hard knowledge base and modifies

it with the states of the trains from the soft knowledge base. The path with the lowest weight is

the one that the rider will resume on. The new information he might learn revolves around how

fast a train is going, or sometimes if a train is functioning or not. At some point the rider will

choose a path with more in between stations over a path with less, because he believes that the

local route is actually faster or that the train that runs the express route is broken. If he has no

paths to go he will be stuck, else if he reaches his destination the program will end.

Results

The above image is our final version of the train network, it consists of 26 stations (1 ~

26), 6 trains (A ~ F), and many connections. Each connection’s weight is embedded in the code,

but the general rule is that a local station always has the weight of 1, and if it takes X weight to

get from a station to another with local routes, then the express route will have the weight of X

divided by 2. And just a side note each transfer of train costes 1 weight to make it more realistic.



At the start of the program, the rider needs to know his starting location as well as his

destination, and his entire knowledge base is printed out to the user to get a better sense of what

is going on. In this demo the rider is trying to get from station 2 to station 14, he assumes

everything is normal, then considers all the available options he has, and finally takes the best

option out of it.

Before the rider actually makes a move, he has chances to learn information and uses it to

revise his belief about the best route to his destination. In this demo we told him that the A train

is broken, the E train is slow, and the F train is fast. The following image is the rider’s belief of

the best path after his knowledge base is revised.



To make the rider travel to the next station, enter “next” into the program. In this demo

after entering many “next” commands the rider was able to reach his destination.

And of course the most fun part is that sometimes the rider can be stuck at a station when

all the available trains of that station are broken.

Discussion

The biggest problems we encountered while completing this project besides the lack of

flavors were exponential growth of complexity and run times as well as our lack of prolog skills.

With one addition of connection to our model the brute force way of finding the shortest path just

received multitudes of calculations. Our first model only consisted of 16 stations and the brute

force method was able to find the shortest path in a blink of an eye, but just adding in 10 more to

our current size the program is already noticeably a lot slower. An implementation of a different

path finding algorithm can significantly improve our program. As for our lack of prolog skills,

the majority of our time spent on this project is debugging something that’s not working, or

restructuring our program to fit prolog’s binding and rebinding style of flow of information. And

lastly, since we spend so much time on just trying to get this program to work properly, we did

not have much time put into coming up with flavors of the world.



Conclusion

Overall, we were able to successfully model the simplest form of cognitive process of

choosing the shortest path. Which is to take what we already know, use the new things we

learned to revise the weight of it, and then make decisions again after the weight of our

knowledge base has been modified. With our capabilities as well as our available times we are

proud of what we have developed.

Works Cited

“Dijkstra's algorithm.” Wikipedia, Wikimedia Foundation, November 02, 2021,
https://en.wikipedia.org/wiki/Dijkstra's_algorithm.

“Graph theory.” Wikipedia, Wikimedia Foundation, October 27, 2021,
https://en.wikipedia.org/wiki/Graph_theory.

Stenovec, T. (2015, December 18). Google has gotten incredibly good at predicting
traffic - here's how. Business Insider. Retrieved November 3, 2021, from
https://www.businessinsider.com/how-google-maps-knows-about-traffic-2015-11.

https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://en.wikipedia.org/wiki/Graph_theory
https://www.businessinsider.com/how-google-maps-knows-about-traffic-2015-11

